

Lois de comportement d'isolants à base de fibres de bois sollicités en compression. Caractérisation à partir de techniques d'imagerie non destructives

> TRAN Thi Ngoc Huyen (2009-2012) C. DELISEE (I2M/GCE) – P. DOUMALIN(LMS POITIERS)

Journée des « Thèses des Bois », 04 février 2011, FCBA Bordeaux

PLAN DE LA PRESENTATION

I. Contexte et Objectifs de la thèse

II. Matériau étudié

III. Méthodes et Résultats

III.1 Essais à l'échelle macroscopique
III.2 Essais sous caméra CCD et Corrélation d'images 2D
III.3 Essais sous microtomographie X et Corrélation d'image 3D
III.4 Analyse 3D de microstructure **IV. Conclusions et Perspectives**

I. CONTEXTE DE LA THESE

 Poursuite des études (US2B) sur les matériaux à base de fibres de bois : relations procédé/structure/propriétés.

- Etude du comportement mécanique suite aux : thèses thermiques (F. Faessel 2003, J. Lux 2005), thèse acoustique (C. Peyrega 2010).
- Optimisation du matériau au cours du stockage, transport, manutention... (compressibilité).

Contexte Economique

Contexte

Scientifique

 Optimisation des performances du matériau pour les applications dans la construction (matériaux isolants).

I. OBJECTIFS DE LA THESE

- Mise au point de méthodes expérimentales non destructives adaptées à des matériaux fibreux multiphasiques à architecture complexe :
 - Très forte porosité
 - Hétérogéniété
 - Forte variabilité aux différentes échelles
- Identification précise des lois de comportement sous sollicitations mécaniques.
- Identification du rôle de chaque population de fibres.

II. MATERIAU ETUDIE

Matériau ≈ 80% fibres bois + 20% fibres thermoplastiques PES/coPES

Fig 2.1 : Panneau Bois/PES

fibre de bois individuelle

ponctuations aréolées bûchette

fibre textile PES/CoPES

(a)

Fig 2.2 : Image MEB de panneaux Bois/PES (940µm) : coupe longitudinale (a) et coupe tranverse (b)

Fibres bois

- Fibres individuelles ou bûchettes de pin maritime avec lumen : Diamètre moyen : 80µm Longueur : ≤ 10mm
- Matériau renouvelable, naturel, recyclable
- Fibres textile PES/coPES
 - Diamètre moyen : 20µm
 - Longueur moyenne : 50mm

II. PROCEDE D'ELABORATION

Procédé d'élaboration : Textile non-tissé par nappage pneumatique et liage thermique en four.

Fig 2.3 : Echelle de densité des panneaux à base de fibres de bois et modes de fabrication associés

 $\Rightarrow Structure 3D de forte épaisseur et très faible densité => Isolant thermique pour la construction (<math>\lambda$ =0,04W/mK)

- ✤ Densité: 0,045
- ✤ Porosité : > 95%

⇒ Procédé sec avec la présence de fibres plastiques pour assurer la cohésion

III. METHODES ET RESULTATS

III.1 Essais à l'échelle macroscopique

Fig 3.1 : Dispositif d'essai (US2B-Pierroton)

Fig 3.2 : Essai non-confiné jusqu'à la consolidation Fig 3.3 : Essai confiné à plusieurs taux de déformation

25 30 35 40

Déformation (%)

Force - Déformation

Fig 3.4 : Confinement d'essai, dimension 10x10cm

✤ Taux maximal de compression : ~ 85%.

100

80

60

40

20

-20

10 15 20

 Comportement non-linéaire avec déformation résiduelle et hystérésis.

- Cycle 20%

- Cyle 25%

- Cycle 30%

Cycle 40%

Pics des cycles

III.1 Essais à l'échelle macroscopique

Fig 3.5 : Echantillon 1 (a = -1500, b = -3)

Fig 3.6 : Echantillon 2 (a = -1450, b = -2,9)

Modèle de VanWyk:
$$\sigma = ae^{b\varepsilon}$$

a ~ -1500
b ~ -3

=> Matériau étudié respecte la loi de comportement des systèmes fibreux aléatoires (Van Wyk 1946)

Fig 3.7 : Echantillon 3 (a = -1470, b = -3)

III.2 Essais sous caméra CCD et Corrélation d'images 2D

Fig 3.8 : Dispositif d'essai sous caméras CCD (LMS Poitiers)

- Matériau fortement hétérogène et poreux
- Parties basses déformées moins que parties hautes (frottement?)
- Comportement non-linéaire, hystérésis

- 1 face par méthode de suivi de marqueurs (1)
- 1 face traité par méthode de corrélation d'image (2)

Corrélation d'image 2D

Détermination des cartes de déformation 2D par comparaison des images consécutives.

Fig 3.9 : Carte de déformation obtenue par corrélation d'image 2D (10x10cm)

III.3 Essai sous microtomographie X et Corrélation d'images 3D

Visualisation 2D d'une tranche 10² mm² (2048² pxls)

- Fig 3.10 : Principe d'acquisition d'images par microtomographie
 - Nanotom Phoenix X-ray, US2B

(*Résolution* \rightarrow 0,5*mm*/*pixel*)

- Microtomographe Skyscan portatif (XyloForest/ XyloMat)
- \rightarrow En cours d'acquisition

=> En cours de réalisation!

Corrélation d'images 3D

- Détermination des cartes de déformation 3D par comparaison des images consécutives.
- Application sur les images obtenues par microtomographie à différents états de compression. (0% -> 20% -> 40%)

III.3 Essai sous microtomographie X et Corrélation d'images 3D

Visualisation 3D d'un réseau fibreux

- Fig 3.10 : Principe d'acquisition d'images par microtomographie
 - Nanotom Phoenix X-ray, US2B

(*Résolution* \rightarrow 0,5*mm*/*pixel*)

- *Microtomographe Skyscan portatif* (*XyloForest/ XyloMat*)
- \rightarrow En cours d'acquisition

Fig 3.11: Principe de corrélation d'images 3D

=> En cours de réalisation!

Corrélation d'images 3D

- Détermination des cartes de déformation 3D par comparaison des images consécutives.
- Application sur les images obtenues par microtomographie à différents états de compression. (0% -> 20% -> 40%)

III.4 ANALYSE 3D DE MICROSTRUCTURE

Caractérisation morphologique 3D

Granulométries, porosités, orientations, connectivité...:

p_i: porosité ε_i : taux de compression

Fig 3.12 : Relation porosité (p_i) – taux de compression (ε)

Fig 3.13 : Diamètre des fibres

III.4 ANALYSE 3D DE MICROSTRUCTURE

Caractérisation morphologique 3D

Segmentation des différentes populations de fibres (H.Tran, C. Delisée)

Fig 3.15 : Réseau fibreux bois/PES (a), fibres bois (b), fibres PES/coPES (c)

Fig 3.16 : Réseau fibreux bois/PES

Carte de déformations 3D: en cours de réalisation

Conclusions

- Le traitement d'images 3D et la technique de corrélation d'images sont les outils efficaces pour comprendre le comportement du matériau à différents états de compression.
- La compréhension du comportement à l'échelle macroscopique doit être complétée et expliquée par les propriétés intrinsèques du matériau au niveau microscopique (fibres) et mésoscopique (réseaux).

Perspectives

- Mise en oeuvre d'essais 3D sous microtomographie aux rayons X (méthodologie expérimentale).
- Identification des caractéristiques du matériau aux différentes échelles en tenant compte de la participation de chaque population de fibres.
- Caractérisation et modélisations des lois de comportement du matériau sous compression.

MERCI DE VOTRE ATTENTION

Journée des « Thèses des Bois », 04 février 2011, Bordeaux